17/01/10 19:17:20 ERROR ShuffleBlockFetcherIterator: Failed to get block(s) from bigdata-hdp-apache1828.xg01.diditaxi.com:7337 java.lang.NullPointerException: group

4936

TypeAnalyzer$UDTAnalyzerInstance$UDTAnalyzerCache$$anonfun$getOrElseUpdate$2$$anonfun$apply$4.apply(TypeAnalyzer.scala:481) 

In this tutorial, we’ll learn how to use Play’s caching API with Scala. This API, while surprisingly simple, addresses many of the situations where we’d like to cache results rather than re-fetching them from a slower system. This is the documentation for the Scala standard library. Package structure . The scala package contains core types like Int, Float, Array or Option which are accessible in all Scala compilation units without explicit qualification or imports. Notable packages include: scala.collection and its sub-packages contain Scala's collections framework mutable.HashMap getOrElseUpdate not reentrant in 2.12 Showing 1-3 of 3 messages. [scala-user] mutable.HashMap getOrElseUpdate not reentrant in 2.12: Jason Zaugg: @Jaimeloeuf yes, we're certain this bug is fixed, assuming you have new enough versions of everything, and scala/scala-seed.g8 certainly has new enough versions of things so this was a reasonable place to begin asking, but I think you want to move to https://users.scala-lang.org at this point and provide full details/transcript on what you're doing, to help folks spot what's going wrong While using a Scala Stream to implement Fibonacci would automatically leverage memoization, one could also explicitly employ the very feature without Streams.

  1. Nar flyttar man fram klockan
  2. Afs volontar
  3. Formella lagkraftens princip
  4. Cv european model

Cause. If the above query returns a non-empty dataset then the problem is caused by the Request type returned by the query. Resolution. Remove these request types or add at least one field to the request type.

Note that I don't want to use getOrElseUpdate here if I don't have to because it gets pretty verbose when you have nested maps and obscures what's actually going on in the code: m.getOrElseUpdate(1992, Map[String, Set[String]]()).getOrElseUpdate("foo", Set[String]()) ++= "bar" So I'm overriding HashMap's "default" method.

Map [ String, String ] () map.getOrElseUpdate ( "key", { map.getOrElseUpdate ( "key", "value1" ) "value2" }) map. Note: getOrElseUpdate is not an atomic operation in EhCache and is implemented as a get followed by computing the value, then a set. This means it’s possible for the value to be computed multiple times if multiple threads are calling getOrElse simultaneously.

Getorelseupdate scala

Okay, so in preparation for the DataWorks Summit :: San Jose I was going over the Spark 2 cluster we give our students, you know - testing the important labs, etc. and lo and behold I found a problem: Testing my old code for Spark 2 Structured Streaming with Apache Kafka was suddenly broken with an

Getorelseupdate scala

Scala for loop is just a syntactic sugar. Oct 28, 2019 createThroughDaemon(PythonWorkerFactory.scala:122) at getOrElseUpdate( BlockManager.scala:882) at org.apache.spark.rdd.RDD. getOrElseUpdate(MapLike.scala:194) at scala.collection.mutable.AbstractMap.getOrElseUpdate(Map.scala:80) at scala.reflect.macros.runtime. UnsatisfiedLinkError: /mxnet/scala-package/init-native/linux-x86_64/target/libmxnet-init-scala getOrElseUpdate(MapLike.scala:194) [INFO] at  getOrElseUpdate(Map.scala:82) [INFO] at scala.reflect.macros.runtime.MacroRuntimes.standardMacroRuntime(MacroRuntimes.scala:50)  getOrElseUpdate$(MapLike.scala:203) [error] at scala.collection.mutable.AbstractMap.getOrElseUpdate(Map.scala:80) [error] at scala.reflect.macros.runtime. TypeAnalyzer$UDTAnalyzerInstance$UDTAnalyzerCache$$anonfun$getOrElseUpdate$2$$anonfun$apply$4.apply(TypeAnalyzer.scala:481)  getOrElseUpdate(Map.scala:80) [error] at scala.reflect.macros.runtime.MacroRuntimes.standardMacroRuntime(MacroRuntimes.scala:38)  getOrElseUpdate(Map.scala:80). [error] at scala.reflect.macros.runtime.MacroRuntimes.standardMacroRuntime(MacroRuntimes.scala:38).

Getorelseupdate scala

Note: getOrElseUpdate is not an atomic operation in EhCache and is implemented as a get followed by computing the value, then a set. This means it’s possible for the value to be computed multiple times if multiple threads are calling getOrElse simultaneously. * getOrElseUpdate(key, value) method that lazily evaluates the value parameter only if the key is not already present * in the cache.
Skatteverket deklaration k5

customer.request.RequestListProviderScala$$anonfun$15.apply(  Scala collections provide many common operations for constructing them, Mutable Map s have a convenient getOrElseUpdate function, that allows you to look  Nov 11, 2018 Update elements by reassigning them. Given a new, mutable Scala Map : scala> var states = scala.collection.mutable.Map[String, String]() states  ms getOrElseUpdate (k, d), If key k is defined in map ms , return its associated value. Otherwise, update ms with the mapping k -> d and return d . Removals:. AbstractMap.getOrElseUpdate(Map.scala:80) [error] at scala.reflect.macros.

In this tutorial, we’ll learn how to use Play’s caching API with Scala. This API, while surprisingly simple, addresses many of the situations where we’d like to cache results rather than re-fetching them from a slower system. This is the documentation for the Scala standard library. Package structure .
Nordstaden kundportal

Getorelseupdate scala






Feb 24, 2016 Scala allows the special keyword lazy in front of val in order to change the val to one that is lazily initialized. While lazy initialization seems 

Relevant references: But how can we increase the count if the word is already in the map? Using Only Built-in Methods. Browse scala concurrent map getorelseupdate picsbut see also scala concurrent map example · Back to home · Go to.


Vitön arktis

Solved: Despite adding the following, --conf. Hey AK, Following is the stack trace: 10:13:28,194 WARN [TaskSetManager] Lost task 8.0 in stage 1.0 (TID 4, hostname

AbstractMap.getOrElseUpdate(Map.scala:80) [error] at scala.reflect.macros. runtime.MacroRuntimes.standardMacroRuntime(MacroRuntimes. Runner.main(Runner.scala) Caused by: java.awt.HeadlessException at getOrElseUpdate(MapLike.scala:189) at scala.collection.mutable.AbstractMap.

The getOrElseUpdate is useful for accessing maps that act as caches. Say you have an expensive computation triggered by invoking a function f : scala> def f(x: String) = { println("taking my time."); sleep(100) x.reverse } f: (x: String)String

RB_ID=842684 Mutable Maps have a convenient getOrElseUpdate function, that allows you to look up a value by key, and compute/store the value if there isn't one already present: @ val m = collection.mutable.Map("one"-> 1, "two"-> 2, "three"-> 3) @ m.getOrElseUpdate("three",-1) // already present, returns existing value res87: Int = 3 @ m // `m` is unchanged res88: mutable. There are 4 solutions: Relax the contract of getOrElseUpdate to potentially allow evaluating the call-by-name parameter. Extract the getOrElseUpdate into another interface that concurrent maps do not inherit, but non-thread-safe maps like mutable.HashMap do. Have ParTrieMap throw an exception for getOrElseUpdate. retronym merged 3 commits into scala: 2.12.x from paplorinc: getOrElseUpdate Nov 22, 2016 Conversation 57 Commits 3 Checks 0 Files changed Conversation The getOrElseUpdate is useful for accessing maps that act as caches. Say you have an expensive computation triggered by invoking a function f : scala> def f(x: String ) = { igreenfield commented on Jan 28, 2018.

.getOrElseUpdate makes it convenient to use a mutable Map as a cache: the second parameter to .getOrElseUpdate is a lazy "by-name" parameter, and is only evaluated when the key is not found in the Map. This provides the common "check if key present, if so return value, otherwise insert new value and return that" workflow built in. As discussed above, the getOrElseUpdate () method retrieves the specified tweets from the cache if they exist, otherwise, it calls our wrapper for the Twitter API to retrieve the latest values. This is a very common usage pattern for any cache. This one API call will probably suffice for the great majority of applications. 4.3.